Universal central extensions of Krichever-Novikov algebras and orthogonal polynomials

Tipo
Artigo de evento
Data de publicação
2024
Periódico
Proceedings of Symposia in Pure Mathematics
Citações (Scopus)
0
Autores
Dos Santos F.A.
Futorny V.
Zhao K.
Orientador
Título da Revista
ISSN da Revista
Título de Volume
Membros da banca
Programa
Resumo
© 2024 American Mathematical Society.We give a survey of the theory of the universal central extensions of superelliptic current and derivation Lie algebras of rings of meromorphic functions on Riemann surfaces. These algebras are examples of Krichever-Novikov algebras. Their universal central extensions have finite dimensional centers which defines certain recurrence relations between its elements. The families of polynomials satisfying such recurrence relations are orthogonal polynomials, classical or nonclassical depending on initial conditions. We survey all known cases for hyperelliptic curves. We also discuss recent results on superelliptic derivation Lie algebras.
Descrição
Palavras-chave
Assuntos Scopus
Citação
DOI (Texto completo)