Universal central extensions of Krichever-Novikov algebras and orthogonal polynomials

dc.contributor.authorDos Santos F.A.
dc.contributor.authorFutorny V.
dc.contributor.authorZhao K.
dc.date.accessioned2024-10-01T06:12:22Z
dc.date.available2024-10-01T06:12:22Z
dc.date.issued2024
dc.description.abstract© 2024 American Mathematical Society.We give a survey of the theory of the universal central extensions of superelliptic current and derivation Lie algebras of rings of meromorphic functions on Riemann surfaces. These algebras are examples of Krichever-Novikov algebras. Their universal central extensions have finite dimensional centers which defines certain recurrence relations between its elements. The families of polynomials satisfying such recurrence relations are orthogonal polynomials, classical or nonclassical depending on initial conditions. We survey all known cases for hyperelliptic curves. We also discuss recent results on superelliptic derivation Lie algebras.
dc.description.firstpage493
dc.description.lastpage505
dc.description.volume108
dc.identifier.doi10.1090/pspum/108/01962
dc.identifier.issnNone
dc.identifier.urihttps://dspace.mackenzie.br/handle/10899/39492
dc.relation.ispartofProceedings of Symposia in Pure Mathematics
dc.rightsAcesso Restrito
dc.titleUniversal central extensions of Krichever-Novikov algebras and orthogonal polynomials
dc.typeArtigo de evento
local.scopus.citations0
local.scopus.eid2-s2.0-85203154473
local.scopus.updated2025-04-01
local.scopus.urlhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85203154473&origin=inward
Arquivos