Engenharia Elétrica e Computação - Dissertações - EE Higienópolis
URI Permanente para esta coleção
Navegar
Navegando Engenharia Elétrica e Computação - Dissertações - EE Higienópolis por Orientador "Lima, Clodoaldo Aparecido de Moraes"
Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
- DissertaçãoClassificação de sinais de eletroencefalograma usando máquinas de vetores suporteChagas, Sandro Luiz das (2009-08-27)
Engenharia Elétrica
O eletroencefalograma (EEG) é um exame médico largamente utilizado no estudo da função cerebral e de distúrbios neurológicos. O EEG é uma série temporal que contém os registros de atividade elétrica do cérebro. Um grande volume de dados é gerado pelos sistemas de monitoração de EEG, o que faz com que a análise visual completa destes dados se torne inviável na prática. Com isso, surge uma grande demanda por métodos computacionais capazes de extrair, de forma automática, informação útil para a realização de diagnósticos. Para atender essa demanda, é necessária uma forma de extrair de um sinal de EEG as características relevantes para um diagnóstico e também uma forma de classificar o EEG em função destas características. O cálculo de estatísticas sobre coeficientes wavelet vem sendo empregado com sucesso na extração de características de diversos tipos de séries temporais, inclusive EEG. As máquinas de vetores de suporte (SVM do inglês Support Vector Machines) constituem uma técnica de aprendizado de máquina que possui alta capacidade de generalização e têm sido empregadas com sucesso em problemas de classificação por diversos pesquisadores. Nessa dissertação é feita uma análise do impacto da utilização de vetores de características baseados em coeficientes wavelet na classificação de EEG utilizando diferentes implementações de SVM. - DissertaçãoEmprego de comitê de máquinas para segmentação da írisSchneider, Mauro Ulisses (2010-08-23)
Engenharia Elétrica
A utilização de sistemas biométricos vem sendo amplamente; incentivados pelo governo e entidades privadas a fim de substituir ou melhorar os sistemas de segurança tradicionais. Os sistemas biométricos são cada vez mais indispensáveis para proteger vidas e bens, sendo robustos, confiáveis, de difícil falsificação e rápida autenticação. Em aplicações de mundo real, os dispositivos de aquisição de imagem e o ambiente nem sempre são controlados, podendo em certas circunstâncias produzir imagens ruidosas ou com grandes variações na tonalidade, textura, geometria, dificultando a sua segmentação e por conseqüência a autenticação do indivíduo. Para lidar eficazmente com tais problemas, nesta dissertação é estudado o emprego de comitês de máquinas em conjunto com técnicas de processamento de imagens digitais para a segmentação da íris. Os componentes estudados na composição do comitê de máquinas são agrupamento por vetores-suporte, k-means e mapas auto- organizáveis. Para a avaliação do desempenho das ferramentas desenvolvidas neste trabalho, os resultados obtidos são comparados com trabalhos relacionados na literatura. Foi utilizada a base de dados pública UBIRIS disponível na internet.