Routes to potentially safer T1 magnetic resonance imaging contrast in a compact plasmonic nanoparticle with enhanced fluorescence

dc.contributor.authorHenderson L.
dc.contributor.authorNeumann O.
dc.contributor.authorKaffes C.
dc.contributor.authorZhang R.
dc.contributor.authorMarangoni V.
dc.contributor.authorRavoori M.K.
dc.contributor.authorKundra V.
dc.contributor.authorBankson J.
dc.contributor.authorNordlander P.
dc.contributor.authorHalas N.J.
dc.date.accessioned2024-03-12T23:57:08Z
dc.date.available2024-03-12T23:57:08Z
dc.date.issued2018
dc.description.abstract© 2018 American Chemical Society.Engineering a compact, near-infrared plasmonic nanostructure with integrated image-enhancing agents for combined imaging and therapy is an important nanomedical challenge. Recently, we showed that Au@SiO2@Au nanomatryoshkas (NM) are a highly promising nanostructure for hosting either T1 MRI or fluorescent contrast agents with a photothermal therapeutic response in a compact geometry. Here, we show that a near-infrared-resonant NM can provide simultaneous contrast enhancement for both T1 magnetic resonance imaging (MRI) and fluorescence optical imaging (FOI) by encapsulating both types of contrast agents in the internal silica layer between the Au core and shell. We also show that this method of T1 enhancement is even more effective for Fe(III), a potentially safer contrast agent compared to Gd(III). Fe-NM-based contrast agents are found to have relaxivities 2× greater than those found in the widely used gadolinium chelate, Gd(III) DOTA, providing a practical alternative that would eliminate Gd(III) patient exposure entirely. This dual-modality nanostructure can enable not only tissue visualization with MRI but also fluorescence-based nanoparticle tracking for quantifying nanoparticle distributions in vivo, in addition to a near-infrared photothermal therapeutic response.
dc.description.firstpage8214
dc.description.issuenumber8
dc.description.lastpage8223
dc.description.volume12
dc.identifier.doi10.1021/acsnano.8b03368
dc.identifier.issn1936-0851
dc.identifier.urihttps://dspace.mackenzie.br/handle/10899/35489
dc.relation.ispartofACS Nano
dc.rightsAcesso Restrito
dc.subject.otherlanguagecontrast agent
dc.subject.otherlanguagefluorescence
dc.subject.otherlanguagemagnetic resonance
dc.subject.otherlanguagenanomatryoshka
dc.subject.otherlanguagephotostability
dc.titleRoutes to potentially safer T1 magnetic resonance imaging contrast in a compact plasmonic nanoparticle with enhanced fluorescence
dc.typeArtigo
local.scopus.citations35
local.scopus.eid2-s2.0-85052306638
local.scopus.subjectEnhanced fluorescence
local.scopus.subjectFluorescence optical imaging
local.scopus.subjectFluorescent contrast agents
local.scopus.subjectMagnetic Resonance Imaging (MRI)
local.scopus.subjectNanoparticle tracking
local.scopus.subjectPlasmonic nanoparticle
local.scopus.subjectPlasmonic nanostructures
local.scopus.subjectSimultaneous contrast
local.scopus.subjectAnimals
local.scopus.subjectContrast Media
local.scopus.subjectFluorescence
local.scopus.subjectGadolinium
local.scopus.subjectGold
local.scopus.subjectIron
local.scopus.subjectMagnetic Resonance Imaging
local.scopus.subjectManganese
local.scopus.subjectMetal Nanoparticles
local.scopus.subjectMice
local.scopus.subjectOptical Imaging
local.scopus.subjectPhototherapy
local.scopus.subjectSilicon Dioxide
local.scopus.updated2024-05-01
local.scopus.urlhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052306638&origin=inward
Arquivos