Polimerização in-situ de poliuretano em meio de óxido de grafeno
Tipo
Dissertação
Data de publicação
2020-01-29
Periódico
Citações (Scopus)
Autores
Avancini , Milena
Orientador
Castro e Silva, Cecilia de Carvalho
Título da Revista
ISSN da Revista
Título de Volume
Membros da banca
Maroneze , Camila Marchetti
Kodama, Yasko
Massi , Marcos
Souza , Adriana Martinelli Catelli de
Kodama, Yasko
Massi , Marcos
Souza , Adriana Martinelli Catelli de
Programa
Engenharia de Materiais e Nanotecnologia
Resumo
A utilização de nanomateriais derivados do grafeno para a produção de compósitos é cada vez
maior. Isso porque o grafeno e seus derivados possuem excelentes propriedades mecânicas,
térmicas e elétricas, promovendo consequentemente um ganho de propriedades na matriz na
qual é aplicado. Para isso, diferentes formas de produção e incorporação desses materiais e
seus derivados vêm sendo estudadas desde o isolamento do grafeno em 2010. Porém algumas
dificuldades vêm sendo encontradas quanto aos métodos de incorporação destes
nanomateriais, pois cada matriz possui uma necessidade específica, e para que o
nanocompósito seja produzido de maneira efetiva, o processo de incorporação deve garantir a
inserção do material à matriz sem pontos de aglomeração ou separação. Com isso, o presente
trabalho propõe a incorporação efetiva de óxido de grafeno (GO) em uma matriz polimérica,
uma espuma flexível a base de poliuretano, através do método de polimerização in-situ,
visando a obtenção de um nanocompósito com propriedades mecânicas superiores à espuma
sem o GO. Para isso, o GO utilizado foi produzido através do método de Hummers modificado
e a produção das espumas seguiu as etapas de um processo industrial convencional. Diferentes
concentrações de GO foram avaliadas no preparo do compósito (0,0010; 0,0015; 0,0030;
0,0090; 0,02; 0,03 e 0,05%), sendo que os melhores ganhos em propriedades mecânicas foram
alcançados ao se utilizar 0,03% (m/m) de GO a matriz polimérica de PU. A adição desta
pequena quantidade de GO durante o processo de polimerização in-situ permitiu um aumento
de 16,78% na tensão de ruptura do material e 11,80% na propriedade de resistência ao rasgo
em comparação com a amostra de PU puro. Além disso as amostras de PU@GO 0,03%,
apresentaram um alongamento de apenas 133,9% antes de se romperem (ao se aplicar 127,0
KPa) em comparação com a amostra de PU puro 172,8% (ao se aplicar 108,8 KPa),
comprovando assim que a incorporação das folhas de GO na matriz polimérica promove um
aumento da rigidez da cadeia polimérica. Testes de força de endentação à 40% (IFD),
mostraram que o nanocompósito PU@GO 0,03%, apresentou um aumento expressivo de
91,40% no valor de IFD, em relação a amostra de PU puro. O método proposto neste trabalho
para incorporar 0,03% de GO a matriz polimérica do PU, não causou alterações no fator de
conforto das espumas e muito menos no processo produtivo, possibilitando assim o
escalonamento industrial do nanocompósito. Deste modo, o nanocompósito desenvolvido
neste trabalho apresenta um grande potencial tecnológico, podendo ser empregado em diversos
setores da indústria dos poliuretanos, gerando materiais com maior tempo de vida, menor
desgaste e elevada resistência mecânica.
The use of graphene derived nanomaterials for composites production is increasing. This is because graphene and its derivatives have excellent mechanical, thermal and electrical properties, consequently promoting a gain of properties in the matrix in which it is applied. To this end, different ways of producing and incorporating these materials and their derivatives have been studied since the insulation of graphene in 2010. However, some difficulties have been encountered regarding the incorporation methods of these nanomaterials, because each matrix has a specific need, and for the nanocomposite to be produced effectively, the incorporation process must ensure the material’s incorporation into the matrix without points of agglomeration or separation. Therefore, this work proposes the effective incorporation of graphene oxide (GO) in a polymeric matrix, a flexible foam based on polyurethane, through the method of polymerization in-situ, aiming to obtain a nanocomposite with mechanical properties superior to foam without GO. For this, the GO used was produced through the modified Hummers method and the foam production followed the steps of a conventional industrial process. Different concentrations of GO were evaluated in the preparation of the composite (0.0010; 0.0015; 0.0030; 0.0090; 0.02; 0.03 and 0.05%), and the best gains in mechanical properties were achieved by using 0.03% (m/m) of GO the PU polymeric matrix. The addition of this small amount of GO during the in-situ polymerization process allowed an increase of 16.78% in the tensile strength of the material and 11.80% in the tear strength property compared to the pure PU sample. In addition, the PU@GO samples 0.03%, showed an elongation of only 133.9% before rupture (when applying 127.0 KPa) compared to the pure PU sample 172.8% (when applying 108.8 KPa), thus proving that the incorporation of GO sheets in the polymeric matrix promotes an increase in the rigidity of the polymeric chain. The Indentation hardness tests (IFD) at 40% showed that the PU@GO nanocomposite (0.03% of GO), showed a significant increase of 91.40% in the value of IFD, compared to the pure PU sample. The method proposed in this work to incorporate 0.03% of GO to the PU polymeric matrix did not cause changes in the comfort factor of the foams and much less in the production process, thus enabling the industrial scheduling of the nanocomposite. Thus, the nanocomposite developed in this work presents a great technological potential and can be used in several sectors of the polyurethane industry, generating materials with longer life, less wear and high mechanical resistance.
The use of graphene derived nanomaterials for composites production is increasing. This is because graphene and its derivatives have excellent mechanical, thermal and electrical properties, consequently promoting a gain of properties in the matrix in which it is applied. To this end, different ways of producing and incorporating these materials and their derivatives have been studied since the insulation of graphene in 2010. However, some difficulties have been encountered regarding the incorporation methods of these nanomaterials, because each matrix has a specific need, and for the nanocomposite to be produced effectively, the incorporation process must ensure the material’s incorporation into the matrix without points of agglomeration or separation. Therefore, this work proposes the effective incorporation of graphene oxide (GO) in a polymeric matrix, a flexible foam based on polyurethane, through the method of polymerization in-situ, aiming to obtain a nanocomposite with mechanical properties superior to foam without GO. For this, the GO used was produced through the modified Hummers method and the foam production followed the steps of a conventional industrial process. Different concentrations of GO were evaluated in the preparation of the composite (0.0010; 0.0015; 0.0030; 0.0090; 0.02; 0.03 and 0.05%), and the best gains in mechanical properties were achieved by using 0.03% (m/m) of GO the PU polymeric matrix. The addition of this small amount of GO during the in-situ polymerization process allowed an increase of 16.78% in the tensile strength of the material and 11.80% in the tear strength property compared to the pure PU sample. In addition, the PU@GO samples 0.03%, showed an elongation of only 133.9% before rupture (when applying 127.0 KPa) compared to the pure PU sample 172.8% (when applying 108.8 KPa), thus proving that the incorporation of GO sheets in the polymeric matrix promotes an increase in the rigidity of the polymeric chain. The Indentation hardness tests (IFD) at 40% showed that the PU@GO nanocomposite (0.03% of GO), showed a significant increase of 91.40% in the value of IFD, compared to the pure PU sample. The method proposed in this work to incorporate 0.03% of GO to the PU polymeric matrix did not cause changes in the comfort factor of the foams and much less in the production process, thus enabling the industrial scheduling of the nanocomposite. Thus, the nanocomposite developed in this work presents a great technological potential and can be used in several sectors of the polyurethane industry, generating materials with longer life, less wear and high mechanical resistance.
Descrição
Palavras-chave
óxido de grafeno , espuma de poliuretano, , nanocompósito.
Assuntos Scopus
Citação
AVANCINI , Milena. Polimerização in-situ de poliuretano em meio de óxido de grafeno. 2020.4? f. Dissertação( Engenharia de Materiais e Nanotecnologia) - Universidade Presbiteriana Mackenzie, São Paulo