Análise da dinâmica do funcionamento de lasers de fibra dopada com Érbio sob a óptica da equação de Ginzburg-Landau

View/ Open
Date
2011-02-21Author
Komninos, Paulo Guilherme
Advisor
Souza, Eunézio Antônio de
Referee
Matos, Christiano José Santiago de
Referee
Wetter, Niklaus Ursus
Metadata
Show full item recordAbstract
Neste trabalho é apresentado um estudo baseado em análise
numérica de lasers à fibra dopada com Érbio utilizando a técnica de acoplamento passivo de modos para que o mesmo opere em regime pulsado. A equação que descreve a dinâmica de uma cavidade laser é conhecida como Equação de Ginzburg-Landau, que neste trabalho é resolvida numericamente pelo Método Split-Step Fourier. Por este método, foi desenvolvido um algoritmo que foi incorporado ao ambiente MATLAB para serem feitos os cálculos numéricos. O método foi validado comparando os resultados gerados pelo programa (largura temporal do pulso devido ao ganho da cavidade com e sem dispersão e não-linearidade) com os resultados publicados na literatura. Após a validação do método, foram reproduzidos resultados experimentais de um laser a fibra dopada com Érbio usando como absorvedor saturável filmes finos de nanotubos de carbono. O laser gera uma largura de banda de 5,7 nm para uma cavidade de comprimento total de 9 m. Este resultado experimental foi utilizado como parâmetro de calibração inicial nas simulações. Apenas variando o comprimento da cavidade na simulação, foram obtidos resultados bem próximos ao do experimento. Esses resultados ajudaram na compreensão de algumas variáveis do experimento. This work presents a study based on the numerical analysis of Erbium-doped fiber lasers using the technique of passive mode-locking for the laser working in pulsed regime. The equation describing the dynamics of a laser cavity is known as Ginzburg-Landau Equation, that in this work is solved numerically by the Split-Step Fourier Method. By this method, an algorithm was developed which was incorporated into the MATLAB environment so taht numerical calculations were made. The method was validated by comparing the results generated by the program (temporal pulse width due to the gain of the cavity with and without dispersion and nonlinearity) with the results published in literature. After validation of the method an experimental results were reproduced of an Erbium-doped fiber laser using thin films of carbon nanotubes as saturable absorbers. The laser generates a bandwidth of 5.7 nm for a cavity with a total length of 9 m. This experimental result was used as a calibration parameter in the initial simulations. Just by varying the length of the cavity in the simulation, results very close to the experiment were obtained. These results have helped in understanding some of the experimental variables.
CNPq Area
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA