Teses
URI Permanente desta comunidade
Navegar
Navegando Teses por Orientador "Castro, Leandro Nunes de"
Agora exibindo 1 - 2 de 2
Resultados por página
Opções de Ordenação
- TeseUm framework analítico para a inteligência de enxame : da biologia à computaçãoCruz, Dávila Patrícia Ferreira (2019-05-30)
Escola de Engenharia Mackenzie (EE)
Os insetos sociais são organismos vivos capazes de ajustar seu comportamento com base no processamento de diferentes estímulos e restrições, apresentando um amplo repertório com-portamental. Em um nível global, os insetos apresentam comportamentos coletivos que exce-dem as suas capacidades individuais, tais como alocação de tarefas e resolução de problemas da colônia. Biólogos têm investido esforços para desvendar os mecanismos que governam o comportamento dos insetos sociais em um nível individual e como eles contribuem para a emergência de um comportamento complexo no nível da colônia. Os insetos sociais têm sido amplamente utilizados como modelos para o melhor entendimento de diversas questões da biologia, principalmente relacionadas à cognição, evolução e comportamento social. Além disso, eles são uma rica fonte de inspiração para o desenvolvimento de sistemas computacio-nais, especialmente para a Inteligência de Enxame, que é uma linha de pesquisa da Ciência da Computação que busca inspiração no comportamento social de insetos e outros animais para o desenvolvimento de ferramentas para a resolução de diferentes problemas. Grande parte das pesquisas tem dado ênfase ao estudo sobre os insetos sociais, tais como abelhas, formigas e cupins. Nas últimas décadas o volume de algoritmos de Inteligência de Enxame propostos na literatura tem aumentado consideravelmente. Porém, alguns desses algoritmos não têm segui-do um rigor científico adequado e, em muitos casos, também não seguem princípios centrais da Inteligência de Enxame e acabam reproduzindo os mesmos procedimentos computacionais de outros algoritmos, apenas revestidos por uma metáfora diferente. Diante desse cenário, essa tese propõe um framework para a análise de algoritmos de Inteligência de Enxame que contribui para o estudo desses algoritmos de forma estruturada, tendo como arquétipo as soci-edades de insetos. O foco é dado aos processos de tomada de decisão individual e como essas decisões contribuem para a capacidade de resolução de problemas apresentada pelos enxames. O principal objetivo do framework proposto é guiar os pesquisadores no processo de análise das metáforas e algoritmos da Inteligência de Enxame de forma consistente e bem fundamen-tada, aproveitando melhor as características e habilidades sociais apresentadas pelas socieda-des de insetos. - TeseMineração de mídias sociais como ferramenta para a análise de tríade da persona virtualLima, Ana Carolina Espírito Santo (2016-12-07)
Escola de Engenharia Mackenzie (EE)
Understanding the human being is a continuous work of perception and inference about how he/she interacts and responds to various environmental stimuli in which he/she is inserted. Each person behaves based on how he/she sees and reacts to the world. However, the Internet has created an environment in which behaviors are also expressed and social media constantly stimulate the creation of social ties and the sharing of information. Identifying and mapping patterns from this data opens up opportunities to understand what is the persona that one wants to express within such environment, leading to what was named here the virtual persona. Therefore, data mining techniques are powerful tools for data exploration and analysis, making it possible to develop a computing infrastructure that allows to infer psychological aspects of the virtual persona. All this technical and computational framework for social media data analysis makes up the social media mining field of research. Motivated by this perspective, this thesis proposes computational frameworks to analyze three aspects of the virtual persona: sentiment; temperament; and personality. As a result, it was developed the Virtual Persona Triad, composed of frameworks for sentiment analysis, temperament prediction and personality identification. We assessed various techniques to represent text and classification algorithms, analyzed via social media mining methods capable of providing the desired inferences about the Triad. The results show a higher predictive ability for the category dictionaries combined with ensembles of classifiers.