Um algoritmo de vida artificial para agrupamento de dados variantes no tempo
dc.contributor.advisor | Silva, Leandro Nunes de Castro | pt_BR |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/2741458816539568 | por |
dc.contributor.author | Santos, Diego Gadens dos | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/5547804405395492 | por |
dc.date.accessioned | 2016-03-15T19:37:44Z | |
dc.date.accessioned | 2020-05-28T18:08:33Z | |
dc.date.available | 2013-05-24 | pt_BR |
dc.date.available | 2020-05-28T18:08:33Z | |
dc.date.issued | 2012-09-14 | pt_BR |
dc.description.abstract | Current technologies have made it possible to generate and store data in high volumes. To process and collect information in large databases is not always as easy as creating them. Therefore, this gap has stimulated the search for efficient techniques capable of extracting useful and non-trivial knowledge, which are intrinsic to these large data sets. The goal of this work is to propose a bioinspired algorithm, based on the Boids artificial life model, which will be used to group data in dynamic environments, i.e. in databases updated over time. The Bo-ids algorithm was originally created to illustrate the simulation of the coordinated movement observed in a flock of birds and other animals. Thus, to use this algorithm for data clustering, some modifications must be applied. These changes will be implemented in the classical rules of cohesion, separation and alignment of the Boids model in order to consider the distance (similarity/dissimilarity) among objects. Thus, it creates objects that stand and move around the space, representing the natural groups within the data, and it is expected that similar ob-jects tend to form dynamic clusters (groups) of Boids in the environment, while dissimilar objects tend to keep a larger distance between them. The results presented attest the robust-ness of the algorithm for clustering time-varying data under the light of different evaluation measures and in various databases from the literature. | eng |
dc.description.sponsorship | Fundo Mackenzie de Pesquisa | pt_BR |
dc.format | application/pdf | por |
dc.identifier.citation | SANTOS, Diego Gadens dos. Um algoritmo de vida artificial para agrupamento de dados variantes no tempo. 2012. 92 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Presbiteriana Mackenzie, São Paulo, 2012. | por |
dc.identifier.uri | http://dspace.mackenzie.br/handle/10899/24343 | |
dc.language | por | por |
dc.publisher | Universidade Presbiteriana Mackenzie | por |
dc.rights | Acesso Aberto | por |
dc.subject | vida artificial | por |
dc.subject | computação natural | por |
dc.subject | mineração de dados | por |
dc.subject | agrupamento de dados | por |
dc.subject | boids | por |
dc.subject | dados variantes no tempo | por |
dc.subject | artificial life | eng |
dc.subject | natural computing | eng |
dc.subject | data mining | eng |
dc.subject | data clustering | eng |
dc.subject | boids | eng |
dc.subject | time-varying data | eng |
dc.subject.cnpq | CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA | por |
dc.thumbnail.url | http://tede.mackenzie.br/jspui/retrieve/3827/Diego%20Gadens%20dos%20Santos.pdf.jpg | * |
dc.title | Um algoritmo de vida artificial para agrupamento de dados variantes no tempo | por |
dc.type | Dissertação | por |
local.contributor.board1 | Silva, Leandro Augusto da | pt_BR |
local.contributor.board1Lattes | http://lattes.cnpq.br/1396385111251741 | por |
local.contributor.board2 | Zuben, Fernando José Von | pt_BR |
local.contributor.board2Lattes | http://lattes.cnpq.br/1756895777404187 | por |
local.publisher.country | BR | por |
local.publisher.department | Engenharia Elétrica | por |
local.publisher.initials | UPM | por |
local.publisher.program | Engenharia Elétrica | por |
Arquivos
Pacote Original
1 - 1 de 1
Carregando...
- Nome:
- Diego Gadens dos Santos.pdf
- Tamanho:
- 2.54 MB
- Formato:
- Adobe Portable Document Format
- Descrição: