Continuum terahertz radiation detection using membrane filters

dc.contributor.authorKaufmann P.
dc.contributor.authorKudaka A.S.
dc.contributor.authorCassiano M.M.
dc.contributor.authorMelo A.M.
dc.contributor.authorMarcon R.
dc.contributor.authorMarun A.
dc.contributor.authorPereyra P.
dc.contributor.authorGodoy R.
dc.contributor.authorLevato H.
dc.contributor.authorTimofeevsky A.V.
dc.contributor.authorNicolaev V.A.
dc.date.accessioned2024-03-13T01:33:44Z
dc.date.available2024-03-13T01:33:44Z
dc.date.issued2009
dc.description.abstractTechnology of remote sensing in the terahertz range (frequency interval arbitrarily set between 0.1-30 THz) is the object of considerable development efforts addressed to a number of new civilian and military applications. Technical challenges appear in the THz sensing of temperature differences above an existing hot surface target, such as radiation patterns produced by high energy electrons in laboratory accelerators, and thermal differentiated structures in the solar disk in space. The efficient suppression of radiation in the visible and near infrared (set arbitrarily for wavelengths < 10 μm) is an essential requirement. An experimental setup has been prepared for testing at room temperature THz materials and detectors, aiming the detection of solar radiation. A custom-made detector consisted in a room-temperature micro-bolometer INO camera with HRFZ-Si window. The THz transmission of two "low-pass" membranes were tested for black body temperatures ranging 300-1000 K: Zitex G110G and TydexBlack. It has been demonstrated that both are effective suppressors of radiation at wavelengths < 15 μm, with the first one exhibiting a small radiation excess, that may be attributed to small visible and NIR allowance. We describe optical setups prepared to detect solar radiation, consisting in a microbolometer camera preceded by a photon pipe, low-pass membrane and band-pass resonant metal mesh, placed at the focus of the 1.5 m reflector for submillimeter waves (SST) at El Leoncito, Argentina Andes. ©2009IEEE.
dc.description.firstpage262
dc.description.lastpage266
dc.identifier.doi10.1109/IMOC.2009.5427586
dc.identifier.urihttps://dspace.mackenzie.br/handle/10899/37307
dc.relation.ispartofSBMO/IEEE MTT-S International Microwave and Optoelectronics Conference Proceedings
dc.rightsAcesso Restrito
dc.subject.otherlanguageTerahertz filters
dc.subject.otherlanguageTerahertz materials
dc.subject.otherlanguageTerahertz sensors
dc.subject.otherlanguageTerahertz transmission
dc.titleContinuum terahertz radiation detection using membrane filters
dc.typeArtigo de evento
local.scopus.citations2
local.scopus.eid2-s2.0-77951734865
local.scopus.subjectArgentina
local.scopus.subjectAt-wavelength
local.scopus.subjectBand pass
local.scopus.subjectBlack body
local.scopus.subjectExperimental setup
local.scopus.subjectFrequency intervals
local.scopus.subjectHigh-energy electron
local.scopus.subjectHot surface
local.scopus.subjectLow-pass
local.scopus.subjectMembrane filters
local.scopus.subjectMetal mesh
local.scopus.subjectMicrobolometer
local.scopus.subjectOptical set-up
local.scopus.subjectRadiation patterns
local.scopus.subjectRoom temperature
local.scopus.subjectSolar disk
local.scopus.subjectTechnical challenges
local.scopus.subjectTemperature differences
local.scopus.subjectTera Hertz
local.scopus.subjectTerahertz radiation detection
local.scopus.subjectTerahertz range
local.scopus.subjectTerahertz sensors
local.scopus.subjectTerahertz transmission
local.scopus.subjectVisible and near infrared
local.scopus.updated2024-05-01
local.scopus.urlhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77951734865&origin=inward
Arquivos