Automatic recognition of epileptic seizure in EEG via support vector machine and dimension fractal

dc.contributor.authorSchneider M.
dc.contributor.authorMustaro P.N.
dc.contributor.authorLima C.A.M.
dc.date.accessioned2024-03-13T01:33:57Z
dc.date.available2024-03-13T01:33:57Z
dc.date.issued2009
dc.description.abstractSupport vector machine (SVM) is a machine learning technique widely applied in classification problems. SVM are based on the Vapnik's Statistical Learning Theory, and successively extended by a number of researchers. On the order hand, the electroencephalogram (EEG) signal captures the electrical activity of the brain and is an important source of information for studying neurological disorders. In order to extract relevant information of EEG signal, a variety of computerized-analysis methods have been developed. Recent studies indicate that methods based on the nonlinear dynamics theory can extract valuable information from neuronal dynamics. However, many these of methods need large amount of data and are computationally expensive. From chaos theory, a global value that is relatively simple to compute is the fractal dimension (FD), it can be used to measure the geometrical complexity of a time series. The FD of a waveform represents a powerful tool for transient detection. In analysis of EEG this feature can been used to identify and distinguish specific states of physiologic function. A variety of algorithms are available for the computation of FD. In this work, we employ SVM to classify the EEG signals from healthy subjects and epileptic subjects using as the features vector the FD. From the experimental results, we can see that classification based on SVM with FD perform well in EEG signals classification, which indicates this classification method is valid and has promising application. © 2009 IEEE.
dc.description.firstpage2841
dc.description.lastpage2845
dc.identifier.doi10.1109/IJCNN.2009.5179059
dc.identifier.urihttps://dspace.mackenzie.br/handle/10899/37319
dc.relation.ispartofProceedings of the International Joint Conference on Neural Networks
dc.rightsAcesso Restrito
dc.titleAutomatic recognition of epileptic seizure in EEG via support vector machine and dimension fractal
dc.typeArtigo de evento
local.scopus.citations18
local.scopus.eid2-s2.0-70449567662
local.scopus.subjectAnalysis method
local.scopus.subjectAutomatic recognition
local.scopus.subjectClassification methods
local.scopus.subjectEEG signals
local.scopus.subjectEEG signals classification
local.scopus.subjectElectrical activities
local.scopus.subjectElectroencephalogram signals
local.scopus.subjectEpileptic seizures
local.scopus.subjectFeatures vector
local.scopus.subjectGeometrical complexity
local.scopus.subjectHealthy subjects
local.scopus.subjectMachine learning techniques
local.scopus.subjectNeurological disorders
local.scopus.subjectNeuronal dynamics
local.scopus.subjectNonlinear dynamics theory
local.scopus.subjectPhysiologic function
local.scopus.subjectSpecific state
local.scopus.subjectStatistical learning theory
local.scopus.subjectTransient detection
local.scopus.subjectWave forms
local.scopus.updated2024-05-01
local.scopus.urlhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=70449567662&origin=inward
Arquivos