The application of Keirsey’s temperament model to twitter data in portuguese

dc.contributor.authorClaro C.F.
dc.contributor.authorLima A.C.E.S.
dc.contributor.authorde Castro L.N.
dc.date.accessioned2024-03-12T23:55:46Z
dc.date.available2024-03-12T23:55:46Z
dc.date.issued2019
dc.description.abstract© Springer Nature Switzerland AG 2019.Temperament is a set of innate tendencies of the mind related with the processes of perception, analysis and decision making. The purpose of this paper is to predict Twitter users temperament based on Portuguese tweets and following Keirsey’s model, which classifies the temperament into artisan, guardian, idealist and rational. The proposed methodology uses a Portuguese version of LIWC, which is a dictionary of words, to analyze the context of words, and supervised learning using the KNN, SVM and Random Forests for training the classifiers. The resultant average accuracy obtained was 88.37% for the artisan temperament, 86.92% for the guardian, 55.61% for the idealist, and 69.09% for the rational. For classification using TF-IDF the SVM algorithm obtained the best performance to the artisan temperament with average accuracy of 88.28%.
dc.description.firstpage408
dc.description.lastpage421
dc.description.volume11352 LNAI
dc.identifier.doi10.1007/978-3-030-05453-3_19
dc.identifier.issn1611-3349
dc.identifier.urihttps://dspace.mackenzie.br/handle/10899/35411
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rightsAcesso Restrito
dc.subject.otherlanguageKeirsey temperament model
dc.subject.otherlanguageMachine learning
dc.subject.otherlanguageSocial media
dc.titleThe application of Keirsey’s temperament model to twitter data in portuguese
dc.typeArtigo de evento
local.scopus.citations1
local.scopus.eid2-s2.0-85059666677
local.scopus.subjectRandom forests
local.scopus.subjectS models
local.scopus.subjectSocial media
local.scopus.subjectSVM algorithm
local.scopus.subjectTwitter datum
local.scopus.updated2024-05-01
local.scopus.urlhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85059666677&origin=inward
Arquivos