A systematic review of machine learning models applied in debt collection operations Uma revisão sistemática de modelos de machine learning aplicados em operações financeiras de cobranças de dívidas

Tipo
Artigo
Data de publicação
2024
Periódico
RISTI - Revista Iberica de Sistemas e Tecnologias de Informacao
Citações (Scopus)
0
Autores
Martins J.A.
Vallim-Filho A.R.A.
Orientador
Título da Revista
ISSN da Revista
Título de Volume
Membros da banca
Programa
Resumo
© 2024, Associacao Iberica de Sistemas e Tecnologias de Informacao. All rights reserved.Brazil is facing high default rates, due in part to the pandemic, leading to the search for new debt collection strategies. Machine Learning (ML), successfully used in numerous areas, is an ally to increase the effectiveness of these operations. This article seeks to present a current overview of research on ML applications in debt collection operations, through a Systematic Literature Review. The PICO methodology was used, initially identifying 41 documents, of which 11 underwent systematic review. The results showed four objectives pursued by the studies: default prediction, personalization of collection strategies, optimization of debt recovery actions and credit recovery prediction. And the main algorithms used were Decision Tree, Logistic Regression, Random Forest, Naive Bayes, Artificial Neural Network and Deep Learning. The results revealed that ML is still little explored in this area, offering potential for substantial research advances.
Descrição
Palavras-chave
Assuntos Scopus
Citação
DOI (Texto completo)