Busca evolutiva por redes booleanas na tarefa de classificação de densidade

dc.contributor.advisorOliveira, Pedro Paulo Balbi de
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9556738277476279por
dc.contributor.authorMattos, Thiago de
dc.creator.Latteshttp://lattes.cnpq.br/4216587931618636por
dc.date.accessioned2018-09-19T18:29:59Z
dc.date.accessioned2020-05-28T18:08:54Z
dc.date.available2020-05-28T18:08:54Z
dc.date.issued2018-05-02
dc.description.abstractBoolean networks consist of nodes that represent binary variables, which are computed as a function of the values represented by their adjacent nodes. This local processing entails global behaviors, such as the convergence to _xed points, a behavior found in the context of the density classi_cation problem, where the aim is the network's convergence to a fixed point of the prevailing node value in the initial global configuration of the network; in other words, a global decision is targeted, but according to a constrained, non-global action. In this work, we rely on evolutionary searches in order to _nd rules and network topologies with good performance in the task. All nodes' neighborhoods are assumed to be de_ned by non-regular and bidirectional links, and the Boolean function of the network initialized by the local majority rule. Firstly, is carried out a search in the space of network topologies, guided by the ω metric, related to the "small-worldness" of the networks, and then, in the space of Boolean functions, but constraining the network topologies to the best family identified in the previous experiment..eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.identifier.citationMATTOS, Thiago de. Busca evolutiva por redes booleanas na tarefa de classificação de densidade. 2018. 95 f. Dissertação( Engenharia Elétrica) - Universidade Presbiteriana Mackenzie, São Paulo.por
dc.identifier.urihttp://dspace.mackenzie.br/handle/10899/24478
dc.keywordsboolean networkseng
dc.keywordscellular automataeng
dc.keywordsdensity classificationeng
dc.keywordsevolutionary computingeng
dc.languageporpor
dc.publisherUniversidade Presbiteriana Mackenziepor
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectredes booleanaspor
dc.subjectautômatos celularespor
dc.subjectclassificação de densidadepor
dc.subjectcomputação evolutivapor
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRApor
dc.thumbnail.urlhttp://tede.mackenzie.br/jspui/retrieve/17001/THIAGO%20DE%20MATTOS.pdf.jpg*
dc.titleBusca evolutiva por redes booleanas na tarefa de classificação de densidadepor
dc.typeDissertaçãopor
local.contributor.board1Ruivo , Eurico Luiz Prospero
local.contributor.board1Latteshttp://lattes.cnpq.br/5918644808671007por
local.contributor.board2Heredia Ruz, Gonzalo Andrés
local.publisher.countryBrasilpor
local.publisher.departmentFaculdade de Computação e Informática (FCI)por
local.publisher.initialsUPMpor
local.publisher.programEngenharia Elétricapor
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
THIAGO DE MATTOS.pdf
Tamanho:
12.05 MB
Formato:
Adobe Portable Document Format
Descrição: