Geração incremental de protótipos controlada por entropia para algoritmos de modelagem preditiva

dc.contributor.advisorSilva, Leandro Augusto da
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1396385111251741 / https://orcid.org/0000-0002-8671-3102por
dc.contributor.authorVasconcelos, Bruno Paulo de
dc.creator.Latteshttp://lattes.cnpq.br/9903752539661030 / https://orcid.org/0000-0003-4415-5680por
dc.date.accessioned2021-12-18T21:44:27Z
dc.date.available2021-12-18T21:44:27Z
dc.date.issued2020-12-07
dc.description.abstractThe main proposals of this dissertation are modifying the GNG (Growing Neural Gas) algorithm for prototype generation from a new automatic stop method to find the right amount of prototypes and also the creation of a prototype selection method called KPS with the goal of improving the accuracy in relation to just use the modified GNG. To create this methods were researched the algorithm operation and which techniques are used inside of it. Algorithms like kNN (k Nearest Neighbor), ENN (Edited Nearest Neighbor), DROP3 (Decremental Reduction Optimization Procedure 3), ATISA1 (Adaptive Threshold-based Instance Selection Algorithm 1) and RIS (Ranking-based Instance Selection) were studied in order to make a comparative study with the created methods. The project methodology consists in an exploratory study of the modified GNG and the prototype selection technique with real databases. The full results will be presented in experimental results and soon after will be made the conclusion, noting that the proposed method contributed to the improvement of accuracy.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.description.sponsorshipFundo Mackenzie de Pesquisapor
dc.formatapplication/pdf*
dc.identifier.citationVASCONCELOS, Bruno Paulo de. Geração incremental de protótipos controlada por entropia para algoritmos de modelagem preditiva. 2020. 70 f. Dissertação (Engenharia Elétrica) - Universidade Presbiteriana Mackenzie, São Paulo, 2020por
dc.identifier.urihttps://dspace.mackenzie.br/handle/10899/28614
dc.keywordsprototypeeng
dc.keywordsGNGeng
dc.keywordsalgorithmseng
dc.keywordsentropyeng
dc.keywordsaccuracyeng
dc.keywordsselectioneng
dc.keywordsreductioneng
dc.languageporpor
dc.publisherUniversidade Presbiteriana Mackenziepor
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectprotótipospor
dc.subjectGNGpor
dc.subjectalgoritmospor
dc.subjectentropiapor
dc.subjectacuráciapor
dc.subjectseleçãopor
dc.subjectreduçãopor
dc.subject.cnpqCNPQ::ENGENHARIASpor
dc.titleGeração incremental de protótipos controlada por entropia para algoritmos de modelagem preditivapor
dc.typeDissertaçãopor
local.contributor.board1Vallim Filho, Arnaldo Rabello de Aguiar
local.contributor.board1Latteshttp://lattes.cnpq.br/2511892257148568por
local.contributor.board2Cavalcanti, George Darmiton da Cunha
local.contributor.board2Latteshttp://lattes.cnpq.br/8577312109146354 / https://orcid.org/0000-0001-7714-2283por
local.publisher.countryBrasilpor
local.publisher.departmentEscola de Engenharia Mackenzie (EE)por
local.publisher.initialsUPMpor
local.publisher.programEngenharia Elétricapor
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
BRUNO PAULO DE VASCONCELOS - protegido.pdf
Tamanho:
1.35 MB
Formato:
Adobe Portable Document Format
Descrição:
Bruno Paulo de Vasconcelos
Licença do Pacote
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.06 KB
Formato:
Plain Text
Descrição: