A Linear Analysis of Coupled Wilson-Cowan Neuronal Populations

dc.contributor.authorNeves L.L.
dc.contributor.authorMonteiro L.H.A.
dc.date.accessioned2024-03-13T00:55:10Z
dc.date.available2024-03-13T00:55:10Z
dc.date.issued2016
dc.description.abstract© 2016 L. L. Neves and L. H. A. Monteiro.Let a neuronal population be composed of an excitatory group interconnected to an inhibitory group. In the Wilson-Cowan model, the activity of each group of neurons is described by a first-order nonlinear differential equation. The source of the nonlinearity is the interaction between these two groups, which is represented by a sigmoidal function. Such a nonlinearity makes difficult theoretical works. Here, we analytically investigate the dynamics of a pair of coupled populations described by the Wilson-Cowan model by using a linear approximation. The analytical results are compared to numerical simulations, which show that the trajectories of this fourth-order dynamical system can converge to an equilibrium point, a limit cycle, a two-dimensional torus, or a chaotic attractor. The relevance of this study is discussed from a biological perspective.
dc.description.volume2016
dc.identifier.doi10.1155/2016/8939218
dc.identifier.issn1687-5273
dc.identifier.urihttps://dspace.mackenzie.br/handle/10899/36084
dc.relation.ispartofComputational Intelligence and Neuroscience
dc.rightsAcesso Aberto
dc.titleA Linear Analysis of Coupled Wilson-Cowan Neuronal Populations
dc.typeArtigo
local.scopus.citations7
local.scopus.eid2-s2.0-84990831590
local.scopus.subjectAnalytical results
local.scopus.subjectChaotic attractors
local.scopus.subjectEquilibrium point
local.scopus.subjectFirst order nonlinear differential equations
local.scopus.subjectFourth-order dynamical systems
local.scopus.subjectLinear approximations
local.scopus.subjectNeuronal populations
local.scopus.subjectSigmoidal functions
local.scopus.subjectAnimals
local.scopus.subjectComputer Simulation
local.scopus.subjectHumans
local.scopus.subjectLinear Models
local.scopus.subjectModels, Neurological
local.scopus.subjectNerve Net
local.scopus.subjectNeurons
local.scopus.updated2024-05-01
local.scopus.urlhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84990831590&origin=inward
Arquivos