Probabilistic logic with strong independence

dc.contributor.authorCozman F.G.
dc.contributor.authorDe Campos C.P.
dc.contributor.authorDa Rocha J.C.F.
dc.date.accessioned2024-03-13T01:43:05Z
dc.date.available2024-03-13T01:43:05Z
dc.date.issued2006
dc.description.abstractThis papers investigates the manipulation of statements of strong independence in probabilistic logic. Inference methods based on polynomial programming are presented for strong independence, both for unconditional and conditional cases. We also consider graph-theoretic representations, where each node in a graph is associated with a Boolean variable and edges carry a Markov condition. The resulting model generalizes Bayesian networks, allowing probabilistic assessments and logical constraints to be mixed. © Springer-Verlag Berlin Heidelberg 2006.
dc.description.firstpage612
dc.description.lastpage621
dc.description.volume4140 LNAI
dc.identifier.doi10.1007/11874850_65
dc.identifier.issn1611-3349
dc.identifier.urihttps://dspace.mackenzie.br/handle/10899/37822
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rightsAcesso Restrito
dc.titleProbabilistic logic with strong independence
dc.typeArtigo de evento
local.scopus.citations0
local.scopus.eid2-s2.0-33751371479
local.scopus.subjectBayesian networks
local.scopus.subjectConditional cases
local.scopus.subjectPolynomial programming
local.scopus.updated2024-05-01
local.scopus.urlhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=33751371479&origin=inward
Arquivos