Maximum sensitivity to update schedules of elementary cellular automata over periodic configurations
Tipo
Artigo
Data de publicação
2020
Periódico
Natural Computing
Citações (Scopus)
3
Autores
Perrot K.
Montalva-Medel M.
de Oliveira P.P.B.
Ruivo E.L.P.
Montalva-Medel M.
de Oliveira P.P.B.
Ruivo E.L.P.
Orientador
Título da Revista
ISSN da Revista
Título de Volume
Membros da banca
Programa
Resumo
© 2019, Springer Nature B.V.This work is a thoughtful extension of the ideas sketched in Montalva et al. (AUTOMATA 2017 exploratory papers proceedings, 2017), aiming at classifying elementary cellular automata (ECA) according to their maximal one-step sensitivity to changes in the schedule of cells update. It provides a complete classification of the ECA rule space for all period sizes n> 9 and, together with the classification for all period sizes n≤ 9 presented in Montalva et al. (Chaos Solitons Fractals 113:209–220, 2018), closes this problem and opens further questionings. Most of the 256 ECA rule’s sensitivity is proved or disproved to be maximum thanks to an automatic application of basic methods. We formalize meticulous case disjunctions that lead to the results, and patch failing cases for some rules with simple arguments. This gives new insights on the dynamics of ECA rules depending on the proof method employed, as for the last rules 45 and 105 requiring (0011) ∗ induction patterns.
Descrição
Palavras-chave
Assuntos Scopus
Automatic application , Chaos solitons , Complete classification , Elementary cellular automaton , Maximum sensitivity , Periodic configuration , Proof methods , Update digraph