A sensitivity and performance analysis of word2vec applied to emotion state classification using a deep neural architecture

dc.contributor.authorPasti R.
dc.contributor.authorVilasboas F.G.
dc.contributor.authorRoque I.R.
dc.contributor.authorde Castro L.N.
dc.date.accessioned2024-03-12T23:50:38Z
dc.date.available2024-03-12T23:50:38Z
dc.date.issued2020
dc.description.abstract© Springer Nature Switzerland AG 2020.Word2Vec has become one of the most relevant neural networks to generate word embeddings for NLP applications. Despite that, little has been investigated in terms of its sensitivity to the word vectors’ length (n) and the window size (w). Thus, the present paper performs a sensitivity analysis of Word2Vec when applied to generate word embeddings for a deep neural architecture used to classify emotion states in tweets. Furthermore, we present a computational performance analysis to investigate how the system scales as a function of n and w in different computing environments. The results show that a window size of approximately half the tweet length (8 words) and a value of n = 50 suffices to find good performances. Also, by increasing these values one may unnecessarily increase the computational cost.
dc.description.firstpage199
dc.description.lastpage206
dc.description.volume1003
dc.identifier.doi10.1007/978-3-030-23887-2_23
dc.identifier.issn2194-5365
dc.identifier.urihttps://dspace.mackenzie.br/handle/10899/35131
dc.relation.ispartofAdvances in Intelligent Systems and Computing
dc.rightsAcesso Restrito
dc.titleA sensitivity and performance analysis of word2vec applied to emotion state classification using a deep neural architecture
dc.typeArtigo de evento
local.scopus.citations1
local.scopus.eid2-s2.0-85068624231
local.scopus.subjectComputational costs
local.scopus.subjectComputational performance
local.scopus.subjectComputing environments
local.scopus.subjectNeural architectures
local.scopus.subjectPerformance analysis
local.scopus.subjectState classification
local.scopus.subjectWindow Size
local.scopus.subjectWord vectors
local.scopus.updated2024-05-01
local.scopus.urlhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85068624231&origin=inward
Arquivos