Visual interpretation of self organizing maps

dc.contributor.authorKitani E.C.
dc.contributor.authorDel Moral Hernandez E.
dc.contributor.authorThomaz C.E.
dc.contributor.authorDa Silva L.A.
dc.date.accessioned2024-03-13T01:30:24Z
dc.date.available2024-03-13T01:30:24Z
dc.date.issued2010
dc.description.abstractThe design and test of a two-stage PCA+SOM methodology targeting applications on images database are presented and the result of the SOM map is analyzed by reconstructing the prototypes (codebook) of the map in terms of concrete images in the input space. This visual analysis allows us to interpret which features were used by the SOM algorithm to create a self-organizing map. Several approaches in the SOM literature study the numbers of clusters captured by the algorithm; this research work views the production of tools that help us to know which features led to self-organization. To accomplish this task, a high dimensional, complex and controlled database formed by human face images has been used. The experimental demonstration of the methodology is made through the analysis of a face database. Despite the complexity of having computations with images of faces, they are easily identified and understood by humans. © 2010 IEEE.
dc.description.firstpage37
dc.description.lastpage42
dc.identifier.doi10.1109/SBRN.2010.15
dc.identifier.urihttps://dspace.mackenzie.br/handle/10899/37122
dc.relation.ispartofProceedings - 2010 11th Brazilian Symposium on Neural Networks, SBRN 2010
dc.rightsAcesso Restrito
dc.subject.otherlanguageCodebook visualization
dc.subject.otherlanguagePCA
dc.subject.otherlanguageSOM
dc.titleVisual interpretation of self organizing maps
dc.typeArtigo de evento
local.scopus.citations5
local.scopus.eid2-s2.0-79952555718
local.scopus.subjectCodebook visualization
local.scopus.subjectCodebooks
local.scopus.subjectDesign and tests
local.scopus.subjectFace database
local.scopus.subjectHigh-dimensional
local.scopus.subjectHuman face image
local.scopus.subjectInput space
local.scopus.subjectPCA
local.scopus.subjectSelf organizing
local.scopus.subjectSelf-organizations
local.scopus.subjectSOM
local.scopus.subjectSOM algorithms
local.scopus.subjectTwo stage
local.scopus.subjectVisual analysis
local.scopus.subjectVisual interpretation
local.scopus.updated2024-05-01
local.scopus.urlhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79952555718&origin=inward
Arquivos