A Survey of Transfer Learning for Convolutional Neural Networks

Tipo
Artigo de evento
Data de publicação
2019
Periódico
Proceedings - 32nd Conference on Graphics, Patterns and Images Tutorials, SIBGRAPI-T 2019
Citações (Scopus)
166
Autores
Ribani R.
Marengoni M.
Orientador
Título da Revista
ISSN da Revista
Título de Volume
Membros da banca
Programa
Resumo
© 2019 IEEE.Transfer learning is an emerging topic that may drive the success of machine learning in research and industry. The lack of data on specific tasks is one of the main reasons to use it, since collecting and labeling data can be very expensive and can take time, and recent concerns with privacy make difficult to use real data from users. The use of transfer learning helps to fast prototype new machine learning models using pre-trained models from a source task since training on millions of images can take time and requires expensive GPUs. In this survey, we review the concepts and definitions related to transfer learning and we list the different terms used in the literature. We bring the point of view from different authors of prior surveys, adding some more recent findings in order to give a clear vision of directions for future work in this field of research.
Descrição
Palavras-chave
Assuntos Scopus
Convolutional neural network , Emerging topics , Machine learning models , Specific tasks , Transfer learning
Citação
DOI (Texto completo)