Classificação de gênero em dados do Twitter baseada na extração de meta-atributos textuais

dc.contributor.advisorCastro, Leandro Nunes de
dc.contributor.advisor-co1Pasti, Rodrigo
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/9305519410031191por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2741458816539568por
dc.contributor.authorLopes Filho, José Ahirton Batista
dc.creator.Latteshttp://lattes.cnpq.br/9352504362541995por
dc.date.accessioned2016-07-06T19:42:24Z
dc.date.accessioned2020-05-28T18:08:48Z
dc.date.available2020-05-28T18:08:48Z
dc.date.issued2016-02-17
dc.description.abstractWith the growth of social media in recent years, there has been an increase on the interest in the automatic characterization of users based on the informal content they generate. In this context, the labeling of users in demographic categories, such as age, ethnicity, origin and race,and the investigation of other attributes inherent to users, such as political preferences, personality and gender expression, has received a great deal of attention, especially based on Twitter data. The present work focuses on the task of gender classification by using 65 textual meta-attributes, commonly used in text attribution tasks, for the extraction of gender expression linguistic cues in tweets written in Portuguese.The work takes into account characters, syntax, words, structure and morphology, as well as selected psycolinguistic cues of short length, multi-genre, content free texts posted on Twitter to classify author's gender via four different machine-learning algorithms. The proposed meta-attributes in this process are also evaluated.eng
dc.formatapplication/pdf*
dc.identifier.citationLopes Filho, José Ahirton Batista. Classificação de gênero em dados do Twitter baseada na extração de meta-atributos textuais. 2016. 67 f. Dissertação( Engenharia Elétrica) - Universidade Presbiteriana Mackenzie, São Paulo .por
dc.identifier.urihttp://dspace.mackenzie.br/handle/10899/24437
dc.keywordsmachine-learning; classification; gender; social media;Twitter; extraction; meta-attributes; portuguese languageeng
dc.languageporpor
dc.publisherUniversidade Presbiteriana Mackenziepor
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectaprendizado de máquina; classificação; gênero; mídias sociais; Twitter; extração; meta-atributos; portuguêspor
dc.subjectmachine-learning; classification; gender; social media;Twitter; extraction; meta-attributes; portuguese languageeng
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA ELETRICApor
dc.thumbnail.urlhttp://tede.mackenzie.br/jspui/retrieve/10805/JOSE%20AHYRTON%20BATISTA%20LOPES%20FILHO.pdf.jpg*
dc.titleClassificação de gênero em dados do Twitter baseada na extração de meta-atributos textuaispor
dc.typeDissertaçãopor
local.contributor.board1Mustaro, Pollyana Notargiacomo
local.contributor.board1Latteshttp://lattes.cnpq.br/5131975026612008por
local.contributor.board2Ferrari, Daniel Gomes
local.contributor.board2Latteshttp://lattes.cnpq.br/2650691713057509por
local.contributor.board3Silveira, Ismar Frango
local.contributor.board3Latteshttp://lattes.cnpq.br/3894359521286830por
local.contributor.board4França, Fabrício Olivetti de
local.contributor.board4Latteshttp://lattes.cnpq.br/8788356220698686por
local.publisher.countryBrasilpor
local.publisher.departmentEscola de Engenharia Mackenzie (EE)por
local.publisher.initialsUPMpor
local.publisher.programEngenharia Elétricapor
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
JOSE AHYRTON BATISTA LOPES FILHO.pdf
Tamanho:
1.41 MB
Formato:
Adobe Portable Document Format
Descrição: