Uma heurística de rotulação de builds com resultado não determinístico

dc.contributor.advisorCastro, Leandro Nunes de
dc.contributor.advisor-co1Bianchini, Calebe de Paula
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/4570923990252346por
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1396385111251741por
dc.contributor.authorCosta , Júlio César de Lima
dc.creator.Latteshttp://lattes.cnpq.br/3863848690529126por
dc.date.accessioned2021-12-18T21:44:24Z
dc.date.available2021-12-18T21:44:24Z
dc.date.issued2020-08-18
dc.description.abstractThe constant search for code integration more and more frequently exposes the need to use automated mechanisms for compiling, running tests, packaging and delivering systems, bringing confidence to those who build and maintain software, as it provides quick feedback on to changes made. Software Engineering describes this process as a build. Because it is a process configured by humans and often also dependent on external services, machine resources and connectivity, they end up becoming sensitive, making some results non-deterministic, a factor that reduces confidence in feedback and increases the need for human research effort. Other areas also suffer loss, such as machine resources and the tomaket team. Given this problem, several studies that use the combination of Software Engineering and Data Science seek to identify non-deterministic results through intelligent algorithms, such as machine learning, thus reducing waste. However, the manual work of labeling builds to be used as input for training steps of the algorithms is quite costly see some cases, even unfeasible. This work proposes a heuristic of collection and automatic labeling of builds with a non-deterministic result and proposes the evolution of the heuristic through the use of clustering algorithms, improving its accuracy by 27%. The results of the labeling of builds with non-deterministic results in two audiences and open source reached a mark of 70% and 100% of accuracy in repositories with 650 and 1224 builds, respectively.eng
dc.description.sponsorshipFundação de Amparo a Pesquisa do Estado de São Paulopor
dc.formatapplication/pdf*
dc.identifier.citationCOSTA , Júlio César de Lima. Uma heurística de rotulação de builds com resultado não determinístico. 2020. 59 f. Dissertação( Engenharia Elétrica) - Universidade Presbiteriana Mackenzie, São Paulopor
dc.identifier.urihttps://dspace.mackenzie.br/handle/10899/28610
dc.keywordscontinuous integrationeng
dc.keywordsnondeterminismeng
dc.keywordsbuildeng
dc.keywordsclustering algorithmeng
dc.keywordsheuristiceng
dc.keywordsclassifiereng
dc.languageporpor
dc.publisherUniversidade Presbiteriana Mackenziepor
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectintegração contínuapor
dc.subjectnão determinismopor
dc.subjectbuildpor
dc.subjectalgoritmo de agrupamentopor
dc.subjectheurísticapor
dc.subjectclassificadorpor
dc.subject.cnpqCNPQ::ENGENHARIASpor
dc.titleUma heurística de rotulação de builds com resultado não determinísticopor
dc.typeDissertaçãopor
local.contributor.board1Castro, Leandro Nunes de
local.contributor.board1Latteshttp://lattes.cnpq.br/2741458816539568por
local.contributor.board2Eler , Marcelo Medeiros
local.contributor.board2Latteshttp://lattes.cnpq.br/0170428647417667por
local.publisher.countryBrasilpor
local.publisher.departmentEscola de Engenharia Mackenzie (EE)por
local.publisher.initialsUPMpor
local.publisher.programEngenharia Elétricapor
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
JULIO CESAR DE LIMA COSTA.pdf
Tamanho:
1.49 MB
Formato:
Adobe Portable Document Format
Descrição:
JÚLIO CÉSARDELIMACOSTA UMA
Licença do Pacote
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.06 KB
Formato:
Plain Text
Descrição: