Development of a methodology for reversible chemical modification of silicon surfaces with application in nanomechanical biosensors

dc.contributor.authorSato R.H.
dc.contributor.authorKosaka P.M.
dc.contributor.authorOmori A.T.
dc.contributor.authorFerreira E.A.
dc.contributor.authorPetri D.F.S.
dc.contributor.authorMalvar O.
dc.contributor.authorDominguez C.M.
dc.contributor.authorPini V.
dc.contributor.authorAhumada O.
dc.contributor.authorTamayo J.
dc.contributor.authorCalleja M.
dc.contributor.authorCunha R.L.O.R.
dc.contributor.authorFiorito P.A.
dc.date.accessioned2024-03-12T23:52:26Z
dc.date.available2024-03-12T23:52:26Z
dc.date.issued2019
dc.description.abstract© 2019 Elsevier B.V.Hypervalent tellurium compounds have a particular reactivity towards thiol compounds which are related to their biological properties. In this work, this property was assembled to tellurium-functionalized surfaces. These compounds were used as linkers in the immobilization process of thiolated biomolecules (such as DNA)on microcantilever surfaces. The telluride derivatives acted as reversible binding agents due to their redox properties, providing the regeneration of microcantilever surfaces and allowing their reuse for further biomolecules immobilizations, recycling the functional surface. Initially, we started from the synthesis of 4-((3-((4-methoxyphenyl)tellanyl)phenyl)amino)-4-oxobutanoic acid, a new compound, which was immobilized on a silicon surface. In nanomechanical systems, the detection involved a hybridization study of thiolated DNA sequences. Fluorescence microscopy technique was used to confirm the immobilization and removal of the telluride-DNA system and provided revealing results about the potentiality of applying redox properties to chalcogen derivatives at surfaces.
dc.description.firstpage287
dc.description.lastpage293
dc.description.volume137
dc.identifier.doi10.1016/j.bios.2019.04.028
dc.identifier.issn1873-4235
dc.identifier.urihttps://dspace.mackenzie.br/handle/10899/35228
dc.relation.ispartofBiosensors and Bioelectronics
dc.rightsAcesso Restrito
dc.subject.otherlanguageBiosensor
dc.subject.otherlanguageChalcogen chemistry
dc.subject.otherlanguageMicrocantilever
dc.subject.otherlanguageNanomechanical biosensors
dc.subject.otherlanguageReversible immobilization
dc.subject.otherlanguageSurface regeneration
dc.titleDevelopment of a methodology for reversible chemical modification of silicon surfaces with application in nanomechanical biosensors
dc.typeArtigo
local.scopus.citations3
local.scopus.eid2-s2.0-85065820666
local.scopus.subjectBiomolecules immobilization
local.scopus.subjectChalcogens
local.scopus.subjectFunctionalized surfaces
local.scopus.subjectMicro-cantilevers
local.scopus.subjectNanomechanical
local.scopus.subjectNanomechanical systems
local.scopus.subjectReversible immobilization
local.scopus.subjectThiolated biomolecules
local.scopus.subjectBase Sequence
local.scopus.subjectBiosensing Techniques
local.scopus.subjectDNA
local.scopus.subjectNanostructures
local.scopus.subjectNucleic Acid Hybridization
local.scopus.subjectSilicon
local.scopus.subjectSulfhydryl Compounds
local.scopus.subjectSurface Properties
local.scopus.subjectTellurium
local.scopus.updated2024-05-01
local.scopus.urlhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85065820666&origin=inward
Arquivos