A Numerical Study on the Regularity of d -Primes via Informational Entropy and Visibility Algorithms

dc.contributor.authorMayer B.L.
dc.contributor.authorMonteiro L.H.A.
dc.date.accessioned2024-03-12T23:49:46Z
dc.date.available2024-03-12T23:49:46Z
dc.date.issued2020
dc.description.abstract© 2020 B. L. Mayer and L. H. A. Monteiro.Let a d-prime be a positive integer number with d divisors. From this definition, the usual prime numbers correspond to the particular case d=2. Here, the seemingly random sequence of gaps between consecutive d-primes is numerically investigated. First, the variability of the gap sequences for d∈2,3,.,11 is evaluated by calculating the informational entropy. Then, these sequences are mapped into graphs by employing two visibility algorithms. Computer simulations reveal that the degree distribution of most of these graphs follows a power law. Conjectures on how some topological features of these graphs depend on d are proposed.
dc.description.volume2020
dc.identifier.doi10.1155/2020/1480890
dc.identifier.issn1099-0526
dc.identifier.urihttps://dspace.mackenzie.br/handle/10899/35082
dc.relation.ispartofComplexity
dc.rightsAcesso Aberto
dc.titleA Numerical Study on the Regularity of d -Primes via Informational Entropy and Visibility Algorithms
dc.typeArtigo
local.scopus.citations1
local.scopus.eid2-s2.0-85091949731
local.scopus.subjectDegree distributions
local.scopus.subjectInformational entropy
local.scopus.subjectPositive integers
local.scopus.subjectPower-law
local.scopus.subjectPrime number
local.scopus.subjectRandom sequence
local.scopus.subjectTopological features
local.scopus.updated2024-05-01
local.scopus.urlhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85091949731&origin=inward
Arquivos