Computing Modulo-n by Composing Cellular Automata Rules

dc.contributor.authorMartins C.L.M.
dc.contributor.authorDe Oliveira P.P.B.
dc.date.accessioned2024-03-13T00:53:16Z
dc.date.available2024-03-13T00:53:16Z
dc.date.issued2016
dc.description.abstract© 2016 IOS Press and the authors.The understanding of how predefined computations can be attained by means of individual cellular automata rules, their spatial arrangements or their temporal sequences, is a key conceptual underpinning in the general notion of emergent computation. In this context, here we construct a solution to the MODn problem, which is the determination of whether the number of 1-bits in a cyclic binary string is perfectly divisible by the integer n > 1. Our solution is given for any lattice size N that is co-prime to n, and relies upon a set of one-dimensional rules, with maximum radius of n-1, organised in a temporal sequence. Although the simpler cases of the problem for n = 2 and n = 3 have been addressed in the literature, this is the first account on the general case, for arbitrary n.
dc.description.firstpage1
dc.description.issuenumber1
dc.description.lastpage17
dc.description.volume145
dc.identifier.doi10.3233/FI-2016-1344
dc.identifier.issn0169-2968
dc.identifier.urihttps://dspace.mackenzie.br/handle/10899/35976
dc.relation.ispartofFundamenta Informaticae
dc.rightsAcesso Restrito
dc.subject.otherlanguageactive state transitions
dc.subject.otherlanguageCellular automata
dc.subject.otherlanguageclassification
dc.subject.otherlanguagedecision problem
dc.subject.otherlanguageemergent computation
dc.subject.otherlanguageMODn
dc.subject.otherlanguagemodulo-n problem
dc.subject.otherlanguageparity
dc.subject.otherlanguagerule composition
dc.titleComputing Modulo-n by Composing Cellular Automata Rules
dc.typeArtigo
local.scopus.citations1
local.scopus.eid2-s2.0-84971394490
local.scopus.subjectActive state
local.scopus.subjectDecision problems
local.scopus.subjectEmergent computation
local.scopus.subjectMODn
local.scopus.subjectModulo-N
local.scopus.subjectparity
local.scopus.updated2024-05-01
local.scopus.urlhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84971394490&origin=inward
Arquivos