M-QAM demodulation based on machine learning
dc.contributor.author | Toledo R.N. | |
dc.contributor.author | Akamine C. | |
dc.contributor.author | Jerji F. | |
dc.contributor.author | Silva L.A. | |
dc.date.accessioned | 2024-03-12T23:46:19Z | |
dc.date.available | 2024-03-12T23:46:19Z | |
dc.date.issued | 2020 | |
dc.description.abstract | © 2020 IEEE.This paper presents a new Quadrature Amplitude Modulation (M-QAM) demodulation method using Machine Learning techniques. The new method significantly reduces the demodulation complexity for high-order constellations while maintains the demodulation accuracy. The experimental results demonstrate a performance gain of up to 1485% for 4096-QAM in comparison with the classical Log-Likelihood Ratio demodulator. | |
dc.description.volume | 2020-October | |
dc.identifier.doi | 10.1109/BMSB49480.2020.9379442 | |
dc.identifier.issn | 2155-5052 | |
dc.identifier.uri | https://dspace.mackenzie.br/handle/10899/34887 | |
dc.relation.ispartof | IEEE International Symposium on Broadband Multimedia Systems and Broadcasting, BMSB | |
dc.rights | Acesso Restrito | |
dc.subject.otherlanguage | Demodulation | |
dc.subject.otherlanguage | LLR | |
dc.subject.otherlanguage | M-QAM | |
dc.subject.otherlanguage | Machine Learning | |
dc.title | M-QAM demodulation based on machine learning | |
dc.type | Artigo de evento | |
local.scopus.citations | 4 | |
local.scopus.eid | 2-s2.0-85103469923 | |
local.scopus.subject | Demodulation complexity | |
local.scopus.subject | Demodulation method | |
local.scopus.subject | High-order | |
local.scopus.subject | Log likelihood ratio | |
local.scopus.subject | Machine learning techniques | |
local.scopus.subject | On-machines | |
local.scopus.subject | Performance Gain | |
local.scopus.updated | 2024-05-01 | |
local.scopus.url | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85103469923&origin=inward |