Periodic solutions of the pendulum
dc.contributor.author | Kucinski M.Y. | |
dc.contributor.author | Monteiro L.H.A. | |
dc.date.accessioned | 2024-03-13T01:47:15Z | |
dc.date.available | 2024-03-13T01:47:15Z | |
dc.date.issued | 2000 | |
dc.description.abstract | We develop an analytical procedure to determine orbits that a harmonically driven, damped pendulum describes in the phase plane. The theory predicts the existence of more than one solution for the same system, depending on initial conditions. Also, it predicts a stable solution around the top position of the pendulum. Trajectories obtained by numerically integrating the pendulum equation in a phase-locked condition agree with our diagrams. Some periodic solutions were found that are not orbitally stable. | |
dc.description.firstpage | 8489 | |
dc.description.issuenumber | 47 | |
dc.description.lastpage | 8505 | |
dc.description.volume | 33 | |
dc.identifier.doi | 10.1088/0305-4470/33/47/312 | |
dc.identifier.issn | 0305-4470 | |
dc.identifier.uri | https://dspace.mackenzie.br/handle/10899/38052 | |
dc.relation.ispartof | Journal of Physics A: Mathematical and General | |
dc.rights | Acesso Restrito | |
dc.title | Periodic solutions of the pendulum | |
dc.type | Artigo | |
local.scopus.citations | 3 | |
local.scopus.eid | 2-s2.0-0034360328 | |
local.scopus.updated | 2024-05-01 | |
local.scopus.url | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0034360328&origin=inward |