Periodic solutions of the pendulum

dc.contributor.authorKucinski M.Y.
dc.contributor.authorMonteiro L.H.A.
dc.date.accessioned2024-03-13T01:47:15Z
dc.date.available2024-03-13T01:47:15Z
dc.date.issued2000
dc.description.abstractWe develop an analytical procedure to determine orbits that a harmonically driven, damped pendulum describes in the phase plane. The theory predicts the existence of more than one solution for the same system, depending on initial conditions. Also, it predicts a stable solution around the top position of the pendulum. Trajectories obtained by numerically integrating the pendulum equation in a phase-locked condition agree with our diagrams. Some periodic solutions were found that are not orbitally stable.
dc.description.firstpage8489
dc.description.issuenumber47
dc.description.lastpage8505
dc.description.volume33
dc.identifier.doi10.1088/0305-4470/33/47/312
dc.identifier.issn0305-4470
dc.identifier.urihttps://dspace.mackenzie.br/handle/10899/38052
dc.relation.ispartofJournal of Physics A: Mathematical and General
dc.rightsAcesso Restrito
dc.titlePeriodic solutions of the pendulum
dc.typeArtigo
local.scopus.citations3
local.scopus.eid2-s2.0-0034360328
local.scopus.updated2024-05-01
local.scopus.urlhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=0034360328&origin=inward
Arquivos