Proposta de um sistema computacional para monitoramento do ambiente de produção agrícola

dc.contributor.advisorOmar, Nizam
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/2067336430076971por
dc.contributor.authorSantos, Marcio Aurélio Soares
dc.creator.Latteshttp://lattes.cnpq.br/5118977927037309por
dc.date.accessioned2021-12-18T21:43:23Z
dc.date.available2021-12-18T21:43:23Z
dc.date.issued2020-08-10
dc.description.abstractThe identification and geospatial monitoring of areas dedicated to agribusiness is fundamental information in the elaboration of strategies and management of economic and environmental resources, both of interest to the wider society. In this work, the objective is to highlight agricultural areas dedicated to seasonal crops, that is, apply a robust computational method, Machine Learning, and enable the generation of information about the agricultural areas with the required accuracy and timely. The challenge requires an approach capable of interacting with different data sources to timely generate accurate field information. Therefore, it is about dealing with the complexity of the environment through the lens of sensors and proper modeling. There are several contributions that aim to meet this demand and in particular, those that address the extraction of information in large volumes of data, as is the case in this research which makes use of temporary series extracted from images. Likewise, other related works share their achievements and improvements using machine learning to classify agriculture areas and the specifics from each of the studied environments. The preliminary results are promising, a layer of knowledge that allows the application of the current techniques and methods to improve information at the culture level has been generated, a two levels classification process. A comparison of the results with the combination of similarity metrics to the dataset as additional attributes was made using the following algorithms: Naive Bayes, Generalized Linear Model, Logistic, Deep Learning, Decision Tree, Randon Forest, Gradient Boosted tree e Support Vector Machine. The overall accuracy achieved was between 93.8% e 99.6%, the highest performance using Boosted Decision Tree algorithms. This information is useful for future research and also to support the private and public sectors in the monitoring and spatial planning of food crops in Brazil.eng
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superiorpor
dc.formatapplication/pdf*
dc.identifier.citationSANTOS, Marcio Aurélio Soares. Proposta de um sistema computacional para monitoramento do ambiente de produção agrícola. 2020.117 f.. Tese ( Doutorado em Engenharia Elétrica) - Universidade Presbiteriana Mackenzie, São Paulo, 2020.por
dc.identifier.urihttps://dspace.mackenzie.br/handle/10899/28592
dc.keywordsmachine learningeng
dc.keywordsremote sensingeng
dc.keywordsagricultureeng
dc.keywordsland use dynamicseng
dc.keywordsaccuracyeng
dc.languageporpor
dc.publisherUniversidade Presbiteriana Mackenziepor
dc.rightsAcesso Abertopor
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectaprendizado de maquinapor
dc.subjectsensoriamento remotopor
dc.subjectagriculturapor
dc.subjectuso do solopor
dc.subjectacuráciapor
dc.subject.cnpqCNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLApor
dc.titleProposta de um sistema computacional para monitoramento do ambiente de produção agrícolapor
dc.typeTesepor
local.contributor.board1Silva, Leandro Augusto da
local.contributor.board1Latteshttp://lattes.cnpq.br/1396385111251741por
local.contributor.board2Assad, Eduardo Delgado
local.contributor.board2Latteshttp://lattes.cnpq.br/2634785138594199por
local.contributor.board3Gurgel, Ângelo Costa
local.contributor.board3Latteshttp://lattes.cnpq.br/1368894778228852por
local.contributor.board4Valio, Adriana Benetti Marques
local.contributor.board4Latteshttp://lattes.cnpq.br/1041565102315246por
local.publisher.countryBrasilpor
local.publisher.departmentEscola de Engenharia Mackenzie (EE)por
local.publisher.initialsUPMpor
local.publisher.programEngenharia Elétricapor
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
MARCIO AURELIO SOARES SANTOS.pdf
Tamanho:
2.39 MB
Formato:
Adobe Portable Document Format
Descrição:
Marcio Aurelio Soares Santos
Licença do Pacote
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
2.06 KB
Formato:
Plain Text
Descrição: