Adelpha Repositório DigitalAdelpha
    • About
    • Our policy
    • Login
    View Item 
    •   DSpace Home
    • Escola de Engenharia Mackenzie (EE)
    • Dissertações
    • Engenharia Elétrica e Computação - Dissertações - EE Higienópolis
    • View Item
    •   DSpace Home
    • Escola de Engenharia Mackenzie (EE)
    • Dissertações
    • Engenharia Elétrica e Computação - Dissertações - EE Higienópolis
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Enxame de partículas aplicado ao agrupamento de textos

    Enxame de partículas aplicado ao agrupamento de textos

    Thumbnail
    View/Open
    Ana Karina Fontes Prior.pdf (405.8Kb)
    Date
    2010-12-22
    Author
    Prior, Ana Karina Fontes
    Advisor
    Silva, Leandro Nunes de Castro
    Referee
    Silva, Leandro Augusto da
    Referee
    Carvalho, Marco Antônio Garcia de
    Metadata
    Show full item record
    Abstract
    A grande quantidade de dados gerados por pessoas e organizações tem estimulado a pesquisa sobre métodos efetivos e automáticos de extração de conhecimentos a partir de bases de dados. Essa dissertação propõe duas novas técnicas bioinspiradas, denominadas cPSC e oPSC, baseadas no algoritmo de otimização por enxame de partículas (PSO - Particle Swarm Optimization) para resolver problemas de agrupamento de dados. Os algoritmos propostos são aplicados a problemas de agrupamento de dados e textos, e seus desempenhos são comparados com outros propostos na literatura específica. Os resultados obtidos nos permitem concluir que os algoritmos propostos são competitivos com aqueles já disponíveis na literatura, porém trazem outros benefícios como a determinação automática do número de grupos nas bases e a efetuação de uma busca pelo melhor particionamento possível da base considerando uma função de custo explícita.
     
    The large number of data generated by people and organizations has stimulated the research on effective and automatic methods of knowledge extraction from databases. This dissertation proposes two new bioinspired techniques, named cPSC and oPSC, based on the Particle Swarm Optimization Algorithm (PSO) to solve data clustering problems. The proposed algorithms are applied to data and text clustering problems and their performances are compared with a standard algorithm from the literature. The results allow us to conclude that the proposed algorithms are competitive with those already available in literature, but bring benefits such as automatic determination of the number of groups on the dataset and a search for the best partitioning of the dataset considering an explicit cost function.
     
    CNPq Area
    CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
    URI
    http://dspace.mackenzie.br/handle/10899/24314
    Collections
    • Engenharia Elétrica e Computação - Dissertações - EE Higienópolis [255]

    Mackenzie
    Universidade Presbiteriana Mackenzie
    Contact Us | Send Feedback
    DSpace Software Copyright © 2002-2020 Duraspace
     

     


    Mackenzie
    Universidade Presbiteriana Mackenzie
    Contact Us | Send Feedback
    DSpace Software Copyright © 2002-2020 Duraspace