Adelpha Repositório DigitalAdelpha
    • About
    • Our policy
    • Login
    View Item 
    •   DSpace Home
    • Escola de Engenharia Mackenzie (EE)
    • Dissertações
    • Engenharia Elétrica e Computação - Dissertações - EE Higienópolis
    • View Item
    •   DSpace Home
    • Escola de Engenharia Mackenzie (EE)
    • Dissertações
    • Engenharia Elétrica e Computação - Dissertações - EE Higienópolis
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjects
    This CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    Programação evolutiva com distribuição estável adaptativa

    Thumbnail
    View/Open
    Leopoldo Bulgarelli de Carvalho.pdf (680.2Kb)
    Date
    2007-09-12
    Author
    Carvalho, Leopoldo Bulgarelli de
    Advisor
    Oliveira, Pedro Paulo Balbi de
    Referee
    Marengoni, Maurício
    Referee
    Ramos, Fernando Manuel
    Metadata
    Show full item record
    Abstract
    Recent applications in evolutionary programming have suggested the use of different stable probability distributions, such as Cauchy and Lévy, in the random process associated with the mutations, as an alternative to the traditional (and also stable) Normal distribution. The motivation for this is the attempt to improve the results in some classes of optimisation problems, over those obtained with Normal distribution. Based upon an algorithm proposed in the literature, mostly its version in [Lee and Yao, 2004], that use non Normal stable distributions, we study herein the effect of turning it adaptive in respect to the determination of the more adequate stable distribution parameters for each problem. The evaluations relied upon standard benchmarking functions of the literature, and the comparative performance tests were carried out in respect to the baseline defined by a standard algorithm using Normal distribution. The results suggest numerical and statistical superiority of the stable distribution based approach, when compared with the baseline. However, they showed no improvement over the adaptive method of [Lee and Yao, 2004], possibly due to a consequence of implementation decisions that had to be made in the present implementation, that were not made explicit therein.
    Summary
    Aplicações recentes em programação evolutiva tem sugerido a utilização de diferentes distribuições estáveis de probabilidade, tais como de Cauchy e de Lévy, no processo aleatório associado às mutações, como alternativa à tradicional (e também estável) distribuição Normal. A motivação para tanto é melhorar os resultados em algumas classes de problemas de otimização, com relação aos obtidos através da distribuição Normal. Esse trabalho propõe uma nova classe de algoritmos auto-adaptativos com respeito à determinação dos parâmetros da distribuição estável mais adequada para cada problema de otimização. Tais algoritmos foram derivados de um existente na literatura, especialmente sua versão apresentada em [Lee e Yao, 2004]. Em um primeiro momento foram estudadas as principais características das distribuições estáveis que são, nesse trabalho, o foco dos processos aleatórios associados às mutações. Posteriormente, foram apresentadas as diferentes abordagens descritas pela literatura e as sugestões de algoritmos com características auto-adaptativas. As avaliações dos algoritmos propostos utilizaram funções de teste padrão da literatura, e os resultados comparativos de desempenho foram realizados com relação a um algoritmo tradicional baseado na distribuição Normal. Posteriormente, foram aplicados novos comparativos entre as diversas abordagens auto-adaptativas definidas no presente estudo, e feito um comparativo do melhor algoritmo auto-adaptativo aqui proposto com o melhor algoritmo adaptativo obtido de [Lee e Yao, 2004]. Os resultados evidenciaram superioridade numérica e estatística da abordagem baseada em distribuições estáveis, sobre o método tradicional baseado na distribuição Normal. No entanto, o método proposto não se mostrou mais eficaz que o método adaptativo sugerido em [Lee e Yao, 2004], o que pode ter sido decorrente de decisões de implementação não explícitas naquele trabalho, que tiveram de ser tomadas no presente contexto.
    CNPq Area
    CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
    Citation
    CARVALHO, Leopoldo Bulgarelli de. Programação evolutiva com distribuição estável adaptativa. 2007. 88 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Presbiteriana Mackenzie, São Paulo, 2007.
    URI
    http://dspace.mackenzie.br/handle/10899/24389
    Collections
    • Engenharia Elétrica e Computação - Dissertações - EE Higienópolis [252]

    Mackenzie
    Universidade Presbiteriana Mackenzie
    Contact Us | Send Feedback
    DSpace Software Copyright © 2002-2020 Duraspace
     

     


    Mackenzie
    Universidade Presbiteriana Mackenzie
    Contact Us | Send Feedback
    DSpace Software Copyright © 2002-2020 Duraspace