Use este identificador para citar ou linkar para este item: http://dspace.mackenzie.br/handle/10899/13142
Tipo do documento: Dissertação
Título: Classificação de sinais de eletroencefalograma usando máquinas de vetores suporte
Autor: Chagas, Sandro Luiz das
Primeiro orientador: Lima, Clodoaldo Aparecido de Moraes
Primeiro membro da banca: Eisencraft, Marcio
Segundo membro da banca: Lorena, Ana Carolina
Resumo: O eletroencefalograma (EEG) é um exame médico largamente utilizado no estudo da função cerebral e de distúrbios neurológicos. O EEG é uma série temporal que contém os registros de atividade elétrica do cérebro. Um grande volume de dados é gerado pelos sistemas de monitoração de EEG, o que faz com que a análise visual completa destes dados se torne inviável na prática. Com isso, surge uma grande demanda por métodos computacionais capazes de extrair, de forma automática, informação útil para a realização de diagnósticos. Para atender essa demanda, é necessária uma forma de extrair de um sinal de EEG as características relevantes para um diagnóstico e também uma forma de classificar o EEG em função destas características. O cálculo de estatísticas sobre coeficientes wavelet vem sendo empregado com sucesso na extração de características de diversos tipos de séries temporais, inclusive EEG. As máquinas de vetores de suporte (SVM do inglês Support Vector Machines) constituem uma técnica de aprendizado de máquina que possui alta capacidade de generalização e têm sido empregadas com sucesso em problemas de classificação por diversos pesquisadores. Nessa dissertação é feita uma análise do impacto da utilização de vetores de características baseados em coeficientes wavelet na classificação de EEG utilizando diferentes implementações de SVM.
Abstract: Electroencephalogram (EEG) is a clinical method widely used to study brain function and neurological disorders. The EEG is a temporal data series which records the electrical activity of the brain. The EEG monitoring systems create a huge amount of data; with this fact a visual analysis of the EEG is not feasible. Because of this, there is a strong demand for computational methods able to analyze automatically the EEG records and extract useful information to support the diagnostics. Herewith, it is necessary to design a tool to extract the relevant features within the EEG record and to classify the EEG based on these features. Calculation of statistics over wavelet coefficients are being used successfully to extract features from many kinds of temporal data series, including EEG signals. Support Vector Machines (SVM) are machine learning techniques with high generalization ability, and they have been successfully used in classification problems by several researches. This dissertation makes an analysis of the influence of feature vectors based on wavelet coefficients in the classification of EEG signal using different implementations of SVMs.
Palavras-chave: máquina de vetor de suporte (SVM);  eletroencefalograma (EEG);  séries temporais;  extração de características;  wavelet;  support vector machine (SVM);  eletroencefalogram (EEG);  temporal data series;  feature extraction;  wavelet
Área(s) do CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Idioma: por
País: BR
Instituição: Universidade Presbiteriana Mackenzie
Sigla da instituição: UPM
Departamento: Engenharia Elétrica
Programa: Engenharia Elétrica
Tipo de acesso: Acesso Aberto
URI: http://tede.mackenzie.br/jspui/handle/tede/1509
http://dspace.mackenzie.br/handle/10899/13142
Data de defesa: 27-Ago-2009
metadata.dc.bitstream.url: http://tede.mackenzie.br/jspui/bitstream/tede/1509/1/Sandro%20Luiz%20das%20Chagas.pdf
Aparece nas coleções:Engenharia Elétrica - Dissertações - EE Higienópolis

Arquivos associados a este item:
Não existem arquivos associados a este item.


Este arquivo é protegido por direitos autorais



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.