Use este identificador para citar ou linkar para este item: http://dspace.mackenzie.br/handle/10899/13076
Tipo do documento: Dissertação
Título: Um modelo para recomendação de cursos de especialização baseado no perfil profissional do candidato
Autor: Souza, Antonio Eduardo Rodrigues de
Primeiro orientador: Stump, Sandra Maria Dotto
Primeiro membro da banca: Pereira, Sérgio Luiz
Segundo membro da banca: Oliveira, Yara Maria Botti Mendes de
Resumo: A globalização da economia tornou os mercados de produtos e serviços mais competitivos, demandando uma melhor qualificação da mão-de-obra. Consequentemente, as empresas têm necessitado de profissionais mais bem qualificados para atender a demandas específicas. Neste contexto, os cursos de especialização têm sido opções procuradas por profissionais para adquirir e atualizar o conhecimento. Contudo, a diversificação de cursos, oferecidos por diversas instituições de ensino, nas mais variadas áreas, direcionados a públicos específicos ou gerais, ou a falta de informações objetivas, dificultam a compreensão de fatores importantes na decisão a ser tomada por um candidato. Uma opção mal escolhida pode incorrer em fatores que podem desencadear a mudança ou até mesmo a desistência do curso. O tema é atual e relevante para as Instituições de Ensino Superior (IES), mostrando a importância de se ofertar cursos de especialização que estejam alinhados às competências das instituições de ensino e aos interesses de capacitação e requalificação do profissional. Portanto, o presente trabalho propõe estudar as características profissionais que influenciam os candidatos na escolha de um curso, e desenvolver um modelo de recomendação, utilizando-se técnicas de inteligência artificial, para uso prático nas IES, que auxilie os candidatos na escolha dos cursos, assim como sirva de apoio aos coordenadores na orientação e seleção dos candidatos. Será aplicada uma metodologia baseada nos processos Knowledge Discovery in Databases (KDD) e CRoss-Industry Standard Process for Data Mining (CRISPDM) para análise e avaliação dos dados históricos de candidatos ingressantes em uma universidade particular, na cidade de São Paulo, e proposto um modelo de recomendação, que identificará o curso mais adequado ao perfil de um candidato, utilizando-se uma técnica de mineração de dados baseada em árvores de decisão para a descoberta de conhecimento relevante do banco de dados. A conclusão do projeto permitiu propor cursos que seriam mais adequados aos perfis profissionais dos candidatos, tomando-se como base as informações do histórico profissional e educacional que foram consideradas mais importantes para a seleção dos candidatos. Espera-se, com isso, tornar mais preciso o serviço de aconselhamento de cursos, e mais ágil a seleção de candidatos, contribuindo para a redução do número de abandonos, desistências ou mudanças nos cursos de especialização oferecidos pela universidade estudada.
Abstract: Economic globalization has made products and services markets more competitive, demanding a better qualification of manpower. Consequently, companies are in need of best qualified professionals to meet specific demands. In this context, specialization courses options have been sought by professionals to acquire and update knowledge. However, diversification of courses offered by various institutions in various areas, targeted to specific audiences or general, or the lack of objective information, hinder the understanding of the important factors in the decision to be taken by a candidate. A poorly chosen option may incur factors that can trigger the change or even dropping out of the course. The topic is current and relevant to Higher Education Institutions (HEIs), showing the importance of offering specialized courses that are aligned to the skills of educational institutions and the interests of the professional training and retraining. Therefore, this paper proposes to study professional factors that influence candidates in choosing a course, and develop a recommendation model, using artificial intelligence techniques to practical use in HEIs, which assists applicants in the choice of courses, as well as serve as support and guidance to staff in the selection of candidates. It was applied a methodology based on processes Knowledge Discovery in Databases (KDD) and Cross-Industry Standard Process for Data Mining (CRISP-DM) in the evaluation of the historical data of candidates freshmen at a private university in the city of São Paulo, and proposed a recommendation model, which will identify the most suitable course of a candidate's profile, using a technique of data mining based on decision trees for the discovery of relevant knowledge from database. The completion of this project has allowed to propose courses that would be more suitable to professional profiles of the candidates, based on the professional and educational historical information which were considered more important for the candidate selection. It is expected, therefore, that the counseling service will become more accurate and more responsive to the selection of candidates, assisting to reduce the number of abandonments, dropouts or changes in specialization courses offered by the studied university.
Palavras-chave: sistemas de recomendação;  mineração de dados;  aprendizagem de máquina;  árvores de decisão;  aconselhamento acadêmico;  recommender systems;  data mining;  learning machine;  decision trees;  academic counseling
Área(s) do CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Idioma: por
País: BR
Instituição: Universidade Presbiteriana Mackenzie
Sigla da instituição: UPM
Departamento: Engenharia Elétrica
Programa: Engenharia Elétrica
Citação: SOUZA, Antonio Eduardo Rodrigues de. Um modelo para recomendação de cursos de especialização baseado no perfil profissional do candidato. 2013. 62 f. Dissertação (Mestrado em Engenharia Elétrica) - Universidade Presbiteriana Mackenzie, São Paulo, 2013.
Tipo de acesso: Acesso Aberto
URI: http://tede.mackenzie.br/jspui/handle/tede/1433
http://dspace.mackenzie.br/handle/10899/13076
Data de defesa: 27-Ago-2013
metadata.dc.bitstream.url: http://tede.mackenzie.br/jspui/bitstream/tede/1433/1/Antonio%20Eduardo%20Rodrigues%20de%20Souza.pdf
Aparece nas coleções:Engenharia Elétrica - Dissertações - EE Higienópolis

Arquivos associados a este item:
Não existem arquivos associados a este item.


Este arquivo é protegido por direitos autorais



Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.